

1 (2)

Determination of the aerodynamic performance of air intake vent Vilpe WIVE

Requested by	Vilpe Oy Martin Granö Kauppatie 9 65610 Mustasaari Finland martin.grano@vilpe.com			
Order ref.	Martin Granö, 17.6.2022, EF4APT2200	037-02		
Contact person	Eurofins Expert Services Oy Pekka Kettunen Tekniikantie 4B 02150 Espoo puh. 020 159 6471 <u>PekkaKettunen@eurofins.fi</u>			
Assignment	Determination of the aerodynamic perfo	ormance of the air intake vent Vilpe WIVE.		
Sample details	The customer delivered the WIVE vent. Description of the sample is presented in Appendix 1.			
	The sample was received Measurements were carried out	12.7.2022 2526.10.2022		
Methods	Air flow rate through the valve was dete 1:2019 /1/.	ermined according to standard EN 13141-		
	In the measurements, the air flow rate through the valve was determined as a function of the static pressure difference between the test chamber and the ambient air. During the measurements, the test chamber was in under pressure compared to the ambient air. Air flow rates were measured according to ISO 5167-1:2003 and ISO 5167-2:2003 /2/ using orifice plates with corner tappings.			
	FINAS Finnish Accreditation Service has perform measurements according to IS other measurements mentioned in this the accreditation.	as accredited our laboratory (T001) to O 5167-1:2003 and ISO 5167-2:2003. All test report are not contained in the field of		

Results	The measurement results are presented in Appendix 2.			
	The test results relate only to the s	sample tested.		
	Instruments used in the measuren	nents as presented in appendix 3.		
References	/1/ EN 13141-1:2019. Ventilation for buildings. Performance testing of components/products for residential ventilation. Part 1: Externally and internally mounted air transfer devices.			
	/2/ ISO 5167-1:2003. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full. Part 1: General principles and requirements.			
	ISO 5167-2:2003. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full. Part 2: Orifice plates.			
	Espoo, 28.10.2022			
	Pekka Kettunen Expert	Mika Hurme Expert		
Appendices Distribution	3 Customer, electronically approved	1		

APPENDIX 1 1 (1)

Description of the sample (according to information from the manufacturer)

APPENDIX 2 1 (9)

Valve: Vilpe WIVE Configuration: WIVE valve, 3 blocks of tubes and grille Setting: Fully open

Aerodynamic performance

EN 13141-1:2019 The ambient air temperature: 19.4 °C

Air density 1,20 kg/m³

APPENDIX 2 2 (9)

Valve: Vilpe WIVE Configuration: WIVE valve, 3 blocks of tubes and grille Setting: Fully open

Aerodynamic performance

EN 13141-1:2019 The ambient air temperature: 19.4 °C

Increasing Δp				Decreasing Δp)
Δp	$q_{ m Vcor}$	$q_{V cor}$ - $q_{V leakage}$	Δp	$q_{ m Vcor}$	$q_{ m Vcor}$ - $q_{ m Vleakage}$
Ра	dm ³ /s	dm³/s	Ра	dm³/s	dm³/s
-0.49	2.44	2.43	-0.48	2.17	2.17
-0.99	3.27	3.27	-0.89	2.81	2.81
-2.06	4.23	4.23	-1.85	4.11	4.11
-3.83	5.72	5.72	-4.08	5.76	5.76
-7.89	8.06	8.06	-8.03	8.01	8.01
-12.9	10.2	10.2	-13.0	10.3	10.3
-20.4	12.8	12.8	-20.4	12.8	12.8

Δp

Static pressure difference between test chamber and ambient air, Pa

(Test chamber pressure is negative compared to ambient air)

- $q_{V cor}$ Air flow rate at air density 1,20 kg/m³, dm³/s
- $q_{V cor}$ $q_{V leakage}$ Air flow rate at air density 1,20 kg/m³ minus testing chamber leakage, dm³/s

Valve: Vilpe WIVE Configuration: WIVE valve, 3 blocks of tubes and grille Setting: Fully open

Flow technical performance calculated using measuring points fitting

EN 13141-1:2019 The ambient air temperature: 19.4 °C

Increasing ∆p				Decreasing Δp)
Δp	$q_{V cor}$	$q_{V cor}$ - $q_{V leakage}$	Δp	$q_{ m Vcor}$	$q_{ m Vcor}$ - $q_{ m Vvuoto}$
Pa	dm ³ /s	dm³/s	Pa	dm³/s	dm³/s
-5.0		6.5	-5.0		6.4
-10.0		9.1	-10.0		9.1
-15.0		10.8	-15.0		10.8
-20.0		12.7	-20.0		12.7

Δp	Statical pressure difference between testing chamber and ambient air, Pa
	(Testing chamber is negetive pressured relative to surrounding air)

 $q_{V cor}$ Air flow rate at air density 1,20 kg/m³, dm³/s

 $q_{V cor}$ - $q_{V leakage}$ Air flow rate at air density 1,20 kg/m3 minus testing chamber leakage, dm³/s

APPENDIX 2 4 (9)

Valve: Vilpe WIVE Configuration: WIVE valve with thermostat, 3 blocks of tubes and grille Setting: Fully open (thermostat blocked)

Aerodynamic performance

EN 13141-1:2019 The ambient air temperature: 19.5 °C

Air density 1,20 kg/m3

APPENDIX 2 5 (9)

Valve: Vilpe WIVE Configuration: WIVE valve with thermostat, 3 blocks of tubes and grille Setting: Fully open (thermostat blocked)

Aerodynamic performance

EN 13141-1:2019

The ambient air temperature: 19.5 °C

Increasing Δp				Decreasing Δp)
Δp	$q_{ m Vcor}$	$q_{V \text{ cor}}$ - $q_{V \text{ leakage}}$	Δp	$q_{ m Vcor}$	$q_{V cor}$ - $q_{V leakage}$
Pa	dm³/s	dm ³ /s	Pa	dm³/s	dm³/s
-0.37	2.11	2.11	-0.47	2.14	2.14
-0.86	2.95	2.95	-1.17	3.10	3.10
-1.89	3.96	3.96	-2.15	4.18	4.18
-4.23	5.78	5.78	-3.95	5.66	5.66
-7.93	7.90	7.90	-7.92	7.90	7.90
-13.0	10.1	10.1	-13.0	10.1	10.1
-21.5	12.9	12.9	-21.5	12.9	12.9

Δp

Static pressure difference between test chamber and ambient air, Pa (Test chamber pressure is negative compared to ambient air)

 $q_{V cor}$ Air flow rate at air density 1,20 kg/m³, dm³/s

 $q_{V cor}$ - $q_{V leakage}$ Air flow rate at air density 1,20 kg/m³ minus testing chamber leakage, dm³/s

Valve: Vilpe WIVE

Configuration: WIVE valve with thermostat, 3 blocks of tubes and grille Setting: Fully open (thermostat blocked)

Flow technical performance calculated using measuring points fitting

EN 13141-1:2019

The ambient air temperature: 19.5 $^{\circ}\mathrm{C}$

Nouseva Δp				Laskeva ∆p	
Δp	$q_{V \text{ cor}}$	$q_{V \text{ cor}}$ - $q_{V \text{ leakage}}$	Δp	$q_{V \text{ cor}}$	$q_{V \text{ cor}}$ - $q_{V \text{ vuoto}}$
Pa	dm³/s	dm³/s	Pa	dm³/s	dm³/s
-5.0		6.3	-5.0		6.4
-10.0		8.9	-10.0		9.0
-15.0		10.6	-15.0		10.6
-20.0		12.3	-20.0		12.3

Δp	Statical pressure difference between testing chamber and ambient air, Pa
	(Testing chamber is negetive pressured relative to surrounding air)
q_{Vcor}	Air flow rate at air density 1,20 kg/m ³ , dm ³ /s
$q_{V cor}$ - $q_{V leakage}$	Air flow rate at air density 1,20 kg/m3 minus testing chamber leakage, dm ³ /s

APPENDIX 2 7 (9)

Valve: Vilpe WIVE Configuration: WIVE valve with thermostat, 3 blocks of tubes, filter and grille Setting: Fully open (thermostat blocked)

Aerodynamic performance

EN 13141-1:2019 The ambient air temperature: 19.4 °C

Air density 1,20 kg/m³

APPENDIX 2 8 (9)

Valve: Vilpe WIVE

Configuration: WIVE valve with thermostat, 3 blocks of tubes, filter and grille Setting: Fully open (thermostat blocked)

Aerodynamic performance

EN 13141-1:2019

The ambient air temperature: 19.4 °C

Increasing Δp				Decreasing Δp)
Δp	$q_{ m Vcor}$	$q_{V \text{ cor}}$ - $q_{V \text{ leakage}}$	Δp	$q_{ m Vcor}$	$q_{V cor}$ - $q_{V leakage}$
Pa	dm ³ /s	dm ³ /s	Pa	dm³/s	dm³/s
-0.41	0.71	0.71	-0.49	0.83	0.83
-1.01	1.21	1.21	-0.87	1.18	1.18
-2.18	2.15	2.15	-2.20	2.17	2.17
-4.16	3.28	3.28	-4.24	3.40	3.40
-8.54	5.35	5.35	-8.32	5.27	5.27
-13.3	6.99	6.99	-13.3	6.98	6.98
-21.2	9.21	9.21	-21.2	9.21	9.21

Δp

Static pressure difference between test chamber and ambient air, Pa (Test chamber pressure is negative compared to ambient air)

 $q_{V cor}$ Air flow rate at air density 1,20 kg/m³, dm³/s

 $q_{V cor}$ - $q_{V leakage}$ Air flow rate at air density 1,20 kg/m³ minus testing chamber leakage, dm³/s

Valve: Vilpe WIVE

Configuration: WIVE valve with thermostat, 3 blocks of tubes, filter and grille Setting: Fully open (thermostat blocked)

Flow technical performance calculated using measuring points fitting

EN 13141-1:2019

The ambient air temperature: 19.4 $^{\circ}\mathrm{C}$

Nouseva Δp				Laskeva ∆p	
Δp	$q_{V \text{ cor}}$	$q_{V \text{ cor}}$ - $q_{V \text{ leakage}}$	Δp	$q_{V cor}$	$q_{V \text{ cor}}$ - $q_{V \text{ vuoto}}$
Pa	dm³/s	dm³/s	Pa	dm³/s	dm³/s
-5.0		3.8	-5.0		3.8
-10.0		5.9	-10.0		5.9
-15.0		7.4	-15.0		7.4
-20.0		8.8	-20.0		8.8

Δp	Statical pressure difference between testing chamber and ambient air, Pa
	(Testing chamber is negetive pressured relative to surrounding air)
q_{Vcor}	Air flow rate at air density 1,20 kg/m ³ , dm ³ /s
$q_{V cor}$ - $q_{V leakage}$	Air flow rate at air density 1,20 kg/m3 minus testing chamber leakage, dm ³ /s

Instruments used

Instrument	Type code	Serial number	Calibration
			date
Micromanometer	Furness FCO12	0611108	15.7.2022
	Furness FCO12	0611107	15.7.2022
	Furness FCO12	0611106	15.7.2022
Barometer	Vaisala PTU303	M4440048	15.7.2022
Hygrometer	Vaisala PTU303	M4440048	21.11.2021
Thermometer	Agilent 34970A	MY44066372	12.7.2022
Orifice plate	Φ 50 / Φ 12.55	-	
	Φ 50 / Φ 23.05	-	

