

Determination of aerodynamic performance and flow noise of the VILPE Air intake unit

Requested by: SK Tuote Oy

Requested by	SK Tuote Oy Kauppatie 9 65610 Mustasaari				
Order	Veli-Pekka Lahti				
Contact person	VTT Expert Services Ltd Product Manager Mikko Nyman Kemistintie 3, Espoo P.O. Box 1001, FI-02044 VTT, Finland Tel. + 358 20 722 4905 E-mail mikko.nyman@vtt.fi				
Assignment	Determination of aerodynamic performance and flow noise of the VILPE Air intake unit				
Sample	The customer delivered the VILPE Air intake unit, the specifications of which are in appendix 1.				
	The sample was received 25.5.2016. Measurements were carried out 30.05.2016.				
Test method	The measurements of the aerodynamic performance of the air terminal device were carried out according to standard EN 12238:2001 /1/.				
	The measurements of the flow noise of the air terminal device were carried out according to standards ISO 5135:1997 /2/ and ISO 3741:2010 /3/.				
	The flow noise was measured on the outdoor side of the air terminal device. Nominal diameter of the test duct was 160 mm.				
	Air flow rates were measured according to ISO 5167-1:2003 and ISO 5167-2:2003 /4/ using orifice plates with corner tappings.				
	FINAS Finnish Accreditation Service has accredited our laboratory (T001) to perform measurements according to standards EN 12238:2001, ISO 5135:1997, ISO 3741:2010, ISO 5167-1:2003 and ISO 5167-2:2003. Other measurements mentioned in this test report do not belong to the field of accreditation.				

Results Measurement results are presented in appe			pendix 2.			
	The results are only valid	for the tested in	tem.			
Reference	/1/ EN 12238:2001. Ventilation for buildings – Air terminal devices – Aerodynamic testing and rating for mixed flow application.					
	/2/ ISO 5135:1997 Acoustics - Determination of sound power levels of noise from air terminal devices, air terminal units, dampers and valves by measurement in a reverberation room.					
	/3/ ISO 3741:2010. Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Precision methods reverberation test rooms.					
	/4/ ISO 5167-1:2003. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full. Part 1: General principles and requirements.					
	ISO 5167-2:2003. Measur devices inserted in circula plates.	rement of fluid r cross-section	flow by means of pressure differential conduits running full. Part 2: Orifice			
	Espoo 3.6.2016					
	Miles Nym-		Tay de			
	Mikko Nyman Product Manager		Tapio Paananen Technical Expert			
Appendices	2					
Distribution	Customer Archive	Original Original				

Device: VILPE Air intake unit **DESCRIPTION OF THE SAMPLE**

1 (3)

Device: VILPE Air intake unit (Ø 160 mm duct) Performance of the device Aerodynamic and flow noise properties EN 12238:2001 ISO 5135:1997 Air density: 1.20 kg/m³

Duct velocity (\u03c6 160 mm duct), m/s

Air volume flow rate, dm³/s

The test results relate only to the sample tested.

The use of the name of VTT Expert Services Ltd or the name VTT Technical Research Centre of Finland in advertising or publication in part of this report is only permissible with written authorisation from VTT Expert Services Ltd.

2 (3)

Device: VILPE Air intake unit (Ø 160 mm duct) Performance of the device A-weighted sound power level EN 12238:2001 ISO 5135:1997 Air density: 1.20 kg/m³

Duct velocity (\u03c6 160 mm duct), m/s

The test results relate only to the sample tested.

The use of the name of VTT Expert Services Ltd or the name VTT Technical Research Centre of Finland in advertising or publication in part of this report is only permissible with written authorisation from VTT Expert Services Ltd.

Device: VILPE Air intake unit (Ø 160 mm duct) Performance of the device Aerodynamic and flow noise properties EN 12238:2001 ISO 5135:1997

Air density 1.20 kg/m³

Measured performance values

Symbol	Unit	1	2	3	4	5	6	7
$q_{\rm VD}$	m ³ /h	269	337	401	482	569	689	836
$q_{\rm VD}$	dm ³ /s	74,7	93,5	111,4	134	158	191	232
v	m/s	3,7	4,7	5,5	6,7	7,9	9,5	11,5
p _{tD}	Pa	12,0	18,5	25,7	37,1	50,9	73,9	106
p _{sD}	Pa	20,3	31,5	44,2	63,7	88,0	128	186
ζ_{tD}	-	1,45	1,43	1,40	1,40	1,37	1,36	1,33
ζ_{sD}	-	2,45	2,43	2,40	2,40	2,37	2,36	2,33
L _{W63}	dB	*39.0	*38.0	*39.0	*42.0	*46.0	*48.0	55.0
L _{W125}	dB	*30.5	*33.5	38.0	41.5	45.0	49.5	54.5
L _{W250}	dB	*30.5	37.0	42.0	47.0	48.0	52.0	56.5
L _{W500}	dB	*28.5	*35.5	41.0	46.0	51.5	55.0	58.0
L _{W1000}	dB	*22.5	*29.0	*34.5	40.5	46.0	51.0	56.0
L _{W2000}	dB	*16.5	*18.5	*23.5	32.0	38.0	45.0	52.5
L _{W4000}	dB	*18.5	*18.5	*19.0	*21.5	*27.0	35.0	44.0
L _{W8000}	dB	*24.0	*24.0	*24.0	*24.0	*24.0	*26.0	*32.0
Lw	dB	*40.5	*42.5	*46.5	51.0	55.0	59.0	63.5
L _{WA}	dB(A)	*30.0	*35.5	40.5	46.0	50.5	55.0	60.0
*) The back	*) The background noise requirements of standard ISO 3741:2010 have not been met.							

Data represent upper bounds to the sound power level of the noise source under test.

Symbols and units

q_{VD}	Air volume flow rate of the device, m ³ /h or dm ³ /s
v	Duct velocity of the device (Ø 160 mm duct), m/s
p _{tD}	Total pressure of the device, Pa
p _{sD}	Static pressure of the device, Pa
ζ_{tD}	Total pressure loss coefficient of the device, -
ζ_{sD}	Static pressure loss coefficient of the device, -
L _{W638000}	Octave band sound power level of the device, dB
L _W	Sound power level of the device, dB
L_{WA}	A-weighted sound power level of the device, $dB(A)$

