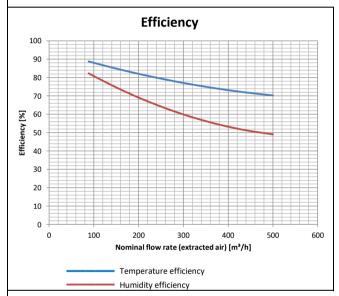
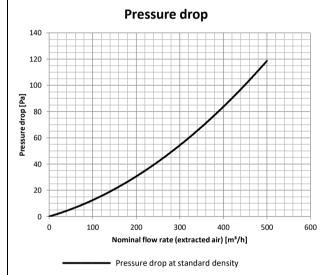
Datasheet ERV366-H500

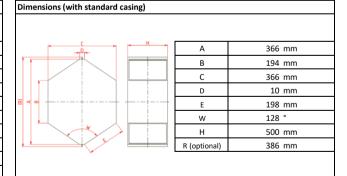
Information

Boundary conditions	-	
Flow rate extracted air	V ₁₁ [m³/h]	198
Temperature extracted air	t ₁₁ [°C]	25
Relative humitity extr. air	rF ₁₁ [%]	50
Temparature intake air	t ₂₁ [°C]	5
Relative humitity intake air	rF ₂₁ [%]	70
Temperature supply air	t ₂₂ [°C]	21,4
Relative humitity supply air	rF ₂₂ [%]	50,4
Temperature exhaust air	t ₁₂ [°C]	8,6
Relative humitity exhaust air	rF ₁₂ [%]	81,7
Barometric pressure	p _{atm} [Pa]	97500
Mass flow ratio	M_1/M_2	1
Condensate	m _C [ml/h]	no condensate


The values shown in the charts and tables are based on calculations and experience
It is only an orientation for the operating range of the heat exchanger under ideal
conditions. Criteria such as inflow, insulation, leakage, orientation, arrangement of
the fans etc. can have a strong influence on the operation conditions of the heat
eychanger. The actual values to be achieved can only be determined by a


conditions. Criteria such as inflow, insulation, leakage, orientation, arrangement of the fans etc. can have a strong influence on the operation conditions of the heat exchanger. The actual values to be achieved can only be determined by a corresponding measurement. Furthermore the occurrence and amount of condensate or ice depends on the boundary conditions and on the properties of the surrounding structure. In the case of condensation or freezing, the characteristic of the heat exchanger can change over time what could cause deviations of the values

Temperature efficiency η_t	82,1%
Humidity efficiency η_x	69,3%


Pressure drop Δp	30 Pa
At entered flow rate and standard density 1,2 kg/m³ dry air.	

According boundary conditions (see above) following DIN EN 308:1997-06 Heat exchangers - Test procedures for establishing performance of air to air and flue gases heat recovery devices.

Value table		
Nominal flow rate (extracted air)	Temperature efficiency	Humidity efficiency
V	η_{t}	η_{x}
m³/h	%	%
88	88,8	82,3
147	85,1	75,0
206	81,7	68,5
265	78,7	62,9
324	76,1	58,1
382	73,8	54,2
441	71,8	51,2
500	70,3	49,1

PAUL Wärmerückgewinnung GmbH
August-Horch-Str. 7
08141 Reinsdorf

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

© PAUL Wärmerückgewinnung GmbH 2020

Tel.: +49 (0) 375 303505 - 0 Fax: +49 (0) 375 303505 - 55 E-Mail: info@paul-lueftung.de

Datasheet created with Version 1.0